6 research outputs found

    Jamming attack on in-band full-duplex communications: Detection and countermeasures

    Full text link
    © 2016 IEEE. Recent advances in the design of in-band full-duplex (IBFD) radios promise to double the throughput of a wireless link. However, IBFD-capable nodes are more vulnerable to jamming attacks than their out-of-band full-duplex (OBFD) counterparts, and any advantages offered by them over the OBFD nodes can be jeopardized by such attacks. A jammer needs to attack both the uplink and the downlink channels to completely break the communication link between two OBFD nodes. In contrast, he only needs to jam one channel (used for both uplink and downlink) in the case of two IBFD nodes. Even worse, a jammer with the IBFD capability can learn the transmitters' activity while injecting interference, allowing it to react instantly with the transmitter's strategies. In this paper, we investigate frequency hopping (FH) technique for countering jamming attacks in the context of IBFD wireless radios. Specifically, we develop an optimal strategy for IBFD radios to combat an IBFD reactive sweep jammer. First, we introduce two operational modes for IBFD radios: transmission reception and transmission-detection. These modes are intended to boost the anti-jamming capability of IBFD radios. We then jointly optimize the decision of when to switch between the modes and when to hop to a new channel using Markov decision processes. Numerical investigations show that our policy significantly improves the throughput of IBFD nodes under jamming attacks

    Cognitive Networks with In-Band Full-Duplex Radios: Jamming Attacks and Countermeasures

    Full text link
    © 2015 IEEE. Although in-band full-duplex (IBFD) radios promise to double the throughput of a wireless link, they are more vulnerable to jamming attacks than their out-of-band full-duplex (OBFD) counterparts. For two communicating OBFD nodes, a jammer needs to attack both the uplink and the downlink channels to completely break the communication link. In contrast, only one common channel needs to be jammed in the case of two IBFD nodes. Even worse, a jammer with self-interference suppression (SIS) capabilities (the underlying technique of IBFD radios) can learn the transmitters' activity while injecting interference, allowing it to react instantly to the transmitter's strategies. In this work, we consider a power-constrained IBFD 'reactive-sweep' jammer that sweeps through the set of channels by jamming a subset of them simultaneously. We model the interactions between the IBFD radios and the jammer as a stochastic constrained zero-sum Markov game in which nodes adopt the frequency hopping (FH) technique as their strategies to counter jamming attacks. Beside the IBFD transmission-reception (TR) mode, we introduce an additional operation mode, called transmission-detection (TD), in which an IBFD radio transmits and leverages its SIS capability to detect jammers. The aim of the TD mode is to make IBFD radios more cognitive to jamming. The nodes' optimal defense strategy that guides them when to hop and which operational mode (TD or TR) to use is then established from the equilibrium of the stochastic Markov game. We prove that this optimal policy has a threshold structure, in which IBFD nodes stay on the same channel up to a certain number of time slots before hopping. Simulation results show that our policy significantly improves the throughput of IBFD nodes under jamming attacks

    Joint Adaptation of Frequency Hopping and Transmission Rate for Anti-Jamming Wireless Systems

    No full text
    Wireless transmissions are inherently vulnerable to jamming attacks. Frequency hopping (FH) and transmission rate adaptation (RA) have been separately used to mitigate jamming. When RA is used alone, it has been shown that a jammer who randomizes its power levels can force the transmitter to always operate at the lowest rate, by maintaining the average jamming power above a certain threshold. On the other hand, when only FH is used, a high throughput overhead is incurred due to frequent channel switching. In this paper, we propose to mitigate jamming by jointly optimizing the FH and RA techniques. This way, the transmitter can escape the jammer by changing its channel, adjusting its rate, or both. We consider a power-constrained "reactive-sweep" jammer who aims at degrading the throughput of the wireless link. The jammer sweeps through the set of channels, jamming a subset of them at a time, using the optimal jamming power. We model the interactions between the legitimate transmitter and jammer as a constrained zero-sum Markov game. The transmitter's optimal defense strategy is derived by obtaining the equilibria of the constrained Markov game. This policy informs the transmitter when to hop to another channel and when to stay on the current channel. Furthermore, it gives the best transmission rate to use in both cases (hop or stay). The structure of the transmitter's optimal policy is shown to be threshold type, whereby the transmitter stays on the same channel up to a certain number of time slots after which it hops. We analyze the "constrained Nash equilibrium" of the Markov game and show that the equilibrium defense strategy of the transmitter is deterministic. Numerical investigations show that the new scheme improves the average throughput and provides better jamming resiliency

    Joint Adaptation of Frequency Hopping and Transmission Rate for Anti-Jamming Wireless Systems

    Full text link
    Wireless transmissions are inherently vulnerable to jamming attacks. Frequency hopping (FH) and transmission rate adaptation (RA) have been separately used to mitigate jamming. When RA is used alone, it has been shown that a jammer who randomizes its power levels can force the transmitter to always operate at the lowest rate, by maintaining the average jamming power above a certain threshold. On the other hand, when only FH is used, a high throughput overhead is incurred due to frequent channel switching. In this paper, we propose to mitigate jamming by jointly optimizing the FH and RA techniques. This way, the transmitter can escape the jammer by changing its channel, adjusting its rate, or both. We consider a power-constrained 'reactive-sweep' jammer who aims at degrading the throughput of the wireless link. The jammer sweeps through the set of channels, jamming a subset of them at a time, using the optimal jamming power. We model the interactions between the legitimate transmitter and jammer as a constrained zero-sum Markov game. The transmitter's optimal defense strategy is derived by obtaining the equilibria of the constrained Markov game. This policy informs the transmitter when to hop to another channel and when to stay on the current channel. Furthermore, it gives the best transmission rate to use in both cases (hop or stay). The structure of the transmitter's optimal policy is shown to be threshold type, whereby the transmitter stays on the same channel up to a certain number of time slots after which it hops. We analyze the 'constrained Nash equilibrium' of the Markov game and show that the equilibrium defense strategy of the transmitter is deterministic. Numerical investigations show that the new scheme improves the average throughput and provides better jamming resiliency
    corecore